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Abstract

We present an analytical calculation of the radial elec-
tron density along a proton bunch passing through an elec-
tron cloud, considering various longitudinal distributions, a
linear transverse force, and a round beam. From the elec-
tron density, we then infer the incoherent tune spread inside
the bunch. The analytical results are compared with a com-
puter simulation, by which we can also study the effect of
a non-uniform transverse beam distribution.

INTRODUCTION

During the passage of a proton (or positron) bunch
through an electron cloud, the electrons are accumulated
around the beam center. This pinch effect produces tune
shift and tune spread in the bunch that could cause a
slow incoherent emittance growth over successive turns.
We compute the electron-cloud density evolution during a
bunch passage and from this we infer the tune shift induced
on the beam particles.

Figure 1: Flow diagram of the analytical calculation.

Figure 1 shows a schematic of our analytical procedure.
Specifically, we consider a cylindrically symmetric model
of a bunch passing through an electron cloud. We first solve
the equations of motion of a single electron in the bunch
potential under the simplifying approximation of a linear
transverse force, for several longitudinal bunch profiles.
Next, assuming an initially Gaussian electron distribution
of finite temperature in transverse phase space, we compute
the evolution of the electron density during the bunch pas-
sage, using Liouville’s theorem. Finally, from the electron
distribution so obtained we calculate the tune shift experi-
enced by individual protons as a function of their transverse
and longitudinal position. An explicit analytical solution is
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derived for an arbitrary longitudinal profile, under the ap-
proximation of a linear transverse force. Approximations
for low electron temperature are discussed.

Via computer simulation we extend the analysis to a non-
linear transverse force for a Gaussian transverse beam pro-
file. From the simulation result, we estimate the incoherent
tune spread in the LHC.

ELECTRON DENSITY EVOLUTION IN
THE APPROXIMATION OF A LINEAR

FORCE

We start from the electron distribution in the four-
dimensional transverse phase space. In the linear force ap-
proximation, the horizontal and vertical planes are uncou-
pled. We thus factorize the electron density distribution as
follows:

ρ(x, ẋ, y, ẏ, t) = ρx(x, ẋ, t) ρy(y, ẏ, t) . (1)

The spatial density also factorizes, as

ne(r, t) ≡ ne(x, y, t) = nx(x, t) ny(y, t) , (2)

where the projected spatial densities are obtained by inte-
grating the projected phase-space densities over the elec-
tron velocities:

nx(x, t) =

∫

dẋρx(x, ẋ, t) . (3)

By our symmetry assumption ne depends on x and y only
in terms of the radius r ≡

√

x2 + y2. From Liouville’s
theorem, we know that the electron density in the phase
space is locally preserved. Hence, with the hypothesis of
an initially Gaussian distribution for the electrons in their
transverse phase space, we can write for the horizontal dis-
tribution

ρx(x, ẋ, t) = ρx(x0, ẋ0, 0) =

√
λe

2πσ0σ̇0
e
−

x
2
0

2σ2
0 e

−

ẋ
2
0

2σ̇2
0 ,

(4)
and an analogous expression applies to the vertical plane.
Here, the parameters σ0 and σ̇0 denote the horizontal rms
size of the initial electron distribution and its horizontal rms
velocity, respectively. For the circularly symmetric prob-
lem that we consider here, the vertical density has the same
form with identical rms size and velocity. We will later
obtain some approximate compact expressions for the spe-
cial case that the initial velocities of the electrons are small
compared with the (correlated) velocities acquired in the
beam potential, i.e. σ̇0 � ωeσ0.

If we are able to solve and invert the equation of motion
of a single electron in the bunch potential, we can express



(x0, ẋ0) as a function of (x, ẋ, t) and insert these resulting
expressions into the right-hand side of (4) in order to get
the electron density at the time t 1.

Equation of motion of an electron in the bunch
potential

We assume that the transverse bunch distribution is
Gaussian and cylindrically symmetric, characterized by the
rms transverse beam size σr (namely σr = σx = σy):

ρ̃b(r, z) =
e λ̃b(z)

2πσ2
r

e
−

r
2

2σ2
r , (5)

where λ̃b(z) is the beam-charge line density, which de-
pends on the longitudinal distance from the bunch center,
z. We can then find the radial electrical field of the beam
experienced by the electrons applying Gauss’ theorem for
a cylinder of radius r,

2πr Ẽb(r, z) =
1

ε0

∫ r

0

ρ̃b(r
′, z)2πr′dr′ , (6)

which gives

Ẽb(r, z) =
e λ̃b(z)

2πε0r

[

1 − e
−

r
2

2σ2
r

]

. (7)

For comparison with simulations, presented later, we ex-
press the field as a function of time

t =
1

c
(nσz − z) , (8)

where t = 0 refers to the instant when the bunch enters into
the e-cloud. We will use n = 3. This yields

Eb(r, t) =
e λb(t)

2πε0r

[

1 − e
−

r
2

2σ2
r

]

(9)

In radial coordinates, the equation of motion of an electron
in the bunch potential is

me

d2r

dt2
= −eEb(r, t) +

l2

mer3
(10)

= −e2λb(t)

2πε0r

[

1 − e
−

r
2

2σ2
r

]

+
l2

mer3
,

where l = mr2φ̇ denotes the angular momentum, which is
a constant of motion.

Expressed in cartesian coordinates the angular momen-
tum term disappears:

ẍ(t) = −2rec
2λb(t)x

r2

[

1 − e
−

r
2

2σ2
r

]

, (11)

ÿ(t) = −2rec
2λb(t)y

r2

[

1 − e
−

r
2

2σ2
r

]

,

We introduced the classical electron radius

re ≡ e2

4πε0mec2
. (12)

1A similar method was used in [1] to compute the beam density evo-
lution under the influence of nonlinear field errors.

Approximation of Linear Force

Under the linear approximation (r � σr) the motion in
the two transverse planes is decoupled and the equation in
the horizontal plane is:

ẍ + ω2
e(t)x = 0 (13)

ω2
e(t) =

λb(t)rec
2

σ2
r

. (14)

A similar expressions holds for the vertical plane. With the
linear approximation, it is possible to solve the equation of
motion (13) and invert the solution, getting (x0, ẋ0) as a
function of (x, ẋ) in the form:

x0 = a(t)x + b(t)ẋ (15)

ẋ0 = c(t)x + d(t)ẋ ,

where the coefficients a(t),...,d(t) depend on the longitudi-
nal distribution, and for a conservative system (ad− bc) =
1. The electron distribution in phase space is computed by
inserting (15) into (4) and the spatial electron density evo-
lution is obtained by integrating over the velocities:

nx(x, t) =

∫ +∞

−∞

d ẋ ρx(x, ẋ, t) (16)

Tune Shift

From the electron density we can compute the tune shift
induced on the beam (over one turn around the ring).

The electrical field produced by the electrons can again
be obtained by Gauss’ theorem:

2πrEe(r, t) =
−|e|
ε0

∫ r

0

ne(r, t)2πr′dr′ , (17)

As we are interested in the field experienced by a pro-
ton at position (r, z) in the bunch, we need to return to the
coordinate z: z = nσz − ct. Then, we get:

Ẽe(r, z) =
−|e|λ̃(r, z)

2πε0r
(18)

with

λ̃(r, z) = 2π

∫ r

0

ñe(r
′, z)r′dr′ (19)

where

ñe

(

r′, z) = ne(r
′, t =

1

c
(nσz − z)

)

The tune shift in the horizontal plane is

∆Qx =
1

4π

∮

C

ds β(s)∆kx , (20)

where

∆kx = − e

γmpc2

∂Ẽe,x

∂x
. (21)



As we have
∂ Ẽe,x

∂x
=

∂ Ẽe,r

∂r

∣

∣

∣

∣

∣

y=0

, (22)

we obtain

∆kx = − e

γmpc2

∂ Ẽe,r

∂r
(23)

=
4πrp

γ

[

ñe(r, z) − 1

2πr2
λ̃(r, z)

]

=
4πrp

γ

[

ñe(r, z) − 1

r2

∫

ñe(r
′, z)r′dr′

]

and the tune shift becomes

∆Qx(r, z) = (24)
∮

C

ds β(s)
rp

γ

[

ñe(r, z) − 1

r2

∫

ñe(r
′, z)r′dr′

]

.

In principle, the proton beam size depends on the beta func-
tions and, thus, also the electron density ñe(r, z) depends
on the position around the ring s. In the following we will
use the smooth focusing approximation,

β(s) = const. = β̄ . , (25)

and we also assume a constant electron-cloud density, so
that the integrand becomes independent of s, and the inte-
gral over s amounts to a multiplication by the circumfer-
ence C.

We now derive the tune shift for two specific longitudinal
bunch profiles and for the general case.

Longitudinal Uniform Bunch Profile, Linear
Force

In the case
λb(t) = λb = const.

the equation of motion reduces to the harmonic oscillator:

ẍ + ω2
ex = 0

ω2
e =

λbrec
2

σ2
r

,

with the solution

x(t) = x0 cos(ωet) + ẋ0
1

ωe

sin (ωet) (26)

ẋ(t) = −x0ωe sin(ωet) + ẋ0 cos (ωet) .

Inverting (26) we obtain (x0, ẋ0) as a function of (x, ẋ):

x0 = x cos(ωet) − ẋ
1

ωe

sin (ωet) = C x − S

ωe

ẋ

ẋ0 = xωe sin(ωet) + ẋ cos (ωet) = ωeS x + C ẋ

with

C = cos(ωet) , (27)

S = sin(ωet) , (28)

which we now insert into Eq. (4).
After some algebra, we obtain the electron distribution

function at the time t along the bunch. It can be written as

ρx(x, ẋ, t) = Ae−c(x,t)e−a(t)(ẋ−b(x,t))2 (29)

where:

A =

√
λe

2πσ0σ̇0

c(x, t) =
ω2

ex2

2 (σ̇2
0S2 + ω2

eσ2
0C2)

a(t) =

(

σ̇2
0S

2 + ω2
eσ2

0C
2
)

2ω2
eσ2

0 σ̇2
0

b(x, t) =
ωex

(

σ̇2
0 − ωeσ

2
0

)

SC

(σ̇2
0S2 + ω2

eσ2
0C2)

The density is obtained by integrating:

nx(x, t) =

∫ +∞

−∞

d ẋ ρx(x, ẋ, t) =

=

√
πλe

2πσ0σ̇0

e−c(x,t)

√

a(t)

=

√
λeωe√
2π

e−c(x,t)

√

σ̇2
0S2 + ω2

eσ2
0C2

(30)

In the low-temperature or strong-beam limit, σ̇0 � ωeσ0,
and the above expression reduces to:

nx(x, t) ≈
√

λe√
2πσ0

e
−

ω
2
e

x
2

2(σ̇2
0

S2+ω2
e

σ2
0

C2)

|C| (31)

The total 2-dimensional density is just the product of
nx(x, t) and ny(y, t), namely

ne(x, y, t) = nx(x, t)ny(y, t)

=
λeω

2
e

2π

e
−

ω
2
e

r
2

2(σ̇2
0

S2+ω2
e

σ2
0

C2)

σ̇2
0S

2 + ω2
eσ2

0C
2

≈ λe

2πσ2
0

e
−

ω
2
e

r
2

2(σ̇2
0

S2+ω2
e

σ2
0

C2)

C2
, (32)

where the last expression refers to the low-temperature
limit. The right-hand side depends only on r, as a result
of the circular geometry.

Inserting

ñe(r, z) = ne

(

r, t =
1

c
(nσz − z)

)

(33)

into (23), and keeping only the lowest-order terms in (ωer),
we get

∆kx ≈ λerp

γ C2σ2
0

1

1 +
S2σ̇2

0

C2ω2
e
σ2
0

(

1 − ω2
er2

2(C2ω2
eσ2

0 + S2σ̇2
0)

)

(34)



where C(t) and S(t) are evaluated at t = (nσz − z)/c.
The tune shift (20) for a particle at position r and z in

the bunch is

∆Qx(r, z) ≈ β̄Lλerp

4πγC2σ2
0

1

1 +
S2σ̇2

0

C2ω2
e
σ2
0

(35)

×
(

1− ω2
er2

2(C2ω2
eσ2

0 + S2σ̇2
0)

)

where L is the circumference of the ring and the smooth
focusing assumption has been invoked.

The tune shift depends on the longitudinal position with
respect to the bunch center and it decreases parabolically
with transverse distance r.

We note that for σ̇0 � σ0ωe, the tune shift becomes
maximum at periodic intervals along the bunch, given by:

C

(

t =
1

c
(nσz − z)

)

= cos
(

ωez − ωe

nσz

c

)

= 0

or

z =
nσz

c
+

1

ωe

(2k + 1)
π

2
, k = 0, 1, ...

The maximum tune shift is:

∆Q̂x ≈ β̄Lλerpω
2
e

4πγ

1

σ̇2
0

. (36)

It depends inversely on the square of the initial electron
velocity spread.

Generalization to Arbitrary Distribution in z,

Linear Force

If the longitudinal distribution of the beam, λb(t), is not
a constant, the electron oscillation frequency varies with
time t (14)

ω2
e(t) =

λb(t)rec
2

σ2
r

(37)

and the equation to be solved is (13):

ẍ + ω2
e(t)x = 0 (38)

If the change in oscillation frequency is adiabatic,
∣

∣

∣

∣

3

2

ω̇e

ωe

∣

∣

∣

∣

,

∣

∣

∣

∣

ω̈e

ω̇e

∣

∣

∣

∣

� 2ωe , (39)

we can apply the WKB approximation. Namely we look
for a solution in the form

x(t) = A(t)eiS(t) . (40)

Substituting this ansatz into (13) and dropping small terms
yields

A(t) ≈ 1
√

Ṡ(t)
(41)

and
Ṡ(t) ≈ ωe(t) . (42)

The general solution will be:

x(t) =
c1

√

ωe(t)
cosS(t) +

c2
√

ωe(t)
sin S(t) , (43)

where

S(t) =

∫ t

0

ωe(t) dt (44)

and c1 and c2 are determined from the initial conditions x0

and ẋ0.
In the general case of an arbitrary longitudinal bunch dis-

tribution λb(t) – but as before for a linear transverse force
–, we can still invert the solution and determine (x0, ẋ0) as
a function of (x, ẋ), as in Eq.(15), to insert the result into
the expression of the electron distribution in phase space
(4). The density ne(r, t) is obtained by integrating over the
velocities and it has the general form:

ne(r, t) =
λe

2πD(t)
e−

r
2

2D(t) (45)

with
D(t) = d(t)2σ2

0 + b(t)2σ̇2
0 (46)

which depends on the longitudinal profile of the bunch.
Again assuming the smooth focusing approximation

(25), the tune shift in the horizontal or vertical plane has
the general form:

∆Qx,y(r, z) =
1

4π
β̄L∆k (47)

=
λerpβ̄L

2πγ r2

(

1 − e−
r
2

2D

(

r2 + D
)

D

)

.

Expanding and keeping only the lowest-order terms in
r2/D, this simplifies to

∆Qx(r, z) ≈ β̄Lλerp

4πγD

(

1 − 3

4

r2

D

)

(48)

Gaussian longitudinal shape In the case of a bunch
with a Gaussian longitudinal shape:

λ̃b(z) =
Nb√
2πσz

e
−

z
2

2σ2
z ; z ∈ (−∞, +∞) (49)

we have, as a function of time,

λb(t) =
Nb√
2πσz

e
−

(nσz−ct)2

2σ2
z (50)

ωe(t) = Ω e
−

(nσz−ct)2

4σ2
z

S(t) = Ω
σz

√
π

c

{

Erf
(n

2

)

+ Erf

[

1

2

(

ct

σz

− n

)]}

Ω =

√

reNbc2

σ2
rσz

√
2π



Inverting the solution, we get from (15)

x0 = a(t)x + b(t)ẋ

ẋ0 = c(t)x + d(t)ẋ ,

where the coefficient a, b, c, d are:

a(t) = e

[

−
z̃
2

8 + n

4 z̃
]

cosS(t)

+e

(

n
2

4 + z̃
2

8 −
n z̃

4

)

(z̃ − n)

4

c

Ω
sin S(t)

b(t) = −e

(

n
2

4 + z̃
2

8 −
n z̃

4

)

1

Ω
sin S(t)

c(t) =

[

c(n − z̃)

4σz

e

(

z̃
2

8 −
n

4 z̃
)

− cn

4σz

e

(

−
z̃
2

8 + n

4 z̃
)

]

cosS(t) +

+

[

Ω e
−

(

n
2

4 + z̃
2

8 −
n z̃

4

)

+
cn(n − z̃)

16σ2
z

c

Ω
e

(

n
2

4 + z̃
2

8 −
n z̃

4

)

]

sinS(t)

d(t) = e

(

z̃
2

8 −
n

4 z̃
)

cosS(t)

+e

(

n
2

4 + z̃
2

8 −
n z̃

4

)

n

4σr

c

Ω
sinS(t)

with

z̃ =
ct

σz

.

Using these expressions for d(t) and b(t), the density and
the tune shift are obtained from (48) with D(t) given by

D(t) = d(t)2σ2
0 + b(t)2σ̇2

0 =

= σ2
0e

(

z̃
2

4 −
n

2 z̃
)

cos2 S(t) +

σ2
0e

(

n
2

2 + z̃
2

4 −
n z̃

2

)

(

n

4σr

)2
c2

Ω2
sin2 S(t) +

−σ2
0e

(

n
2

4 + z̃
2

4 −
n z̃

2

)

n

2σr

c

Ω
sinS(t) cos S(t) +

+σ̇2
0

1

Ω2
e

(

n
2

2 + z̃
2

4 −
n z̃

2

)

sin2 S(t)

The tune shift at the start of the bunch (z̃ = 0) is

∆Qx(r, z) ≈ β̄C̃λerp

4πγσ2
0

,

is the tune shift expected for the unperturbed initial cloud
density [2].

EXTENSION TO NON-LINEAR
TRANSVERSE FORCE

Via a simple tracking code, we extended the analysis to
electrons moving in the potential of a transverse Gaussian
beam. For the simulations we took the parametres for LHC
at injection, listed in Table 1.

Table 1: Parameters used in the simulations for LHC at
injection

electron cloud density ρe 6 × 1011 m−3

bunch population Nb 1.1× 1011

rms bunch length σz 0.115 m
rms beam size σb 0.884 mm
nominal tunes Qx,y 64.28, 59.31
electron cloud size σ0 10 σb

electron initial velocity σ̇0 ωeσ0/100

Figure 2 shows the electron density evolution at the cen-
tre of the pipe, during the passage of a bunch, computed
with the linear force approximation and for the Gaussian
beam profile. The simulation with the linear force acting
on the electrons is consistent with the analytical prediction
(the height of the peaks depends on the initial electron ve-
locity, which was slightly different; there is also a small
shift in the position of the peaks, which depends on the ini-
tial condition and the slicing in our simulation).

On the other hand, if the electrons move in the poten-
tial generated by a transversely Gaussian beam, the peaks
almost disappear and after a quarter oscillation the density
stays almost constant. In the case of the non-linear force,
in fact, as illustrated in Fig. 3, the electrons do not reach
the centre of the bunch simultaneously, but their oscillation
frequency depends on the initial amplitude. Figure 4 dis-
plays snapshots of the radial distribution of the electrons at
different times during the bunch passage both for the linear
force approximation and for the Gaussian potential. Figure
5 is the same as the right picture in Fig. 2, but on a linear
vertical scale. Figure 6 shows the phase space distribution
for the same (nonlinear) case, at four different time steps,
which are indicated in Fig.5.

Figure 5: Electron density vs. time at the centre of the pipe,
during the passage of a Gaussian bunch (non-linear force).

As can be seen in Figs. 5 and 2, the density enhancement
at the center of the bunch is about a factor 50. This allows



Figure 2: Electron density vs. time at the centre of the pipe,during the passage of a bunch, assuming a linear transverse
force (left) and a Gaussian transverse beam profile (right). In red the simulated density evolution and in green the analytical
results. A Gaussian bunch profile is assumed in z.

Figure 3: Vertical position versus time for 6 electrons starting at different amplitudes spaced at 0.5σ: (left) linear force;
(right) Gaussian force. A Gaussian bunch profile is assumed in z

Figure 4: Snap shots of radial distribution (ρ × r) at 4 different times during the bunch passage: (left) linear force
approximation, (right) Gaussian transverse profile. A Gaussian bunch profile is assumed in z



us to roughly extimate the tune spread via

∆Q ≈ β̄C̃rp

2γ
ne , (51)

where ne denotes the enhanced electron density. For the
example of the LHC, this gives the value ∆Q ≈ 0.13, if the
initial unperturbed electron cloud density is 6× 1011 m−3.
A frequency map analysis [3] from HEADTAIL simula-
tions [4] in a frozen-field approximation gave a tune spread
of ≈ 0.05 at z = +2σz. This tune spread corresponds to
a density enhancement of a factor 20 [5] (see Fig. 7), in
nearly perfect agreement with Fig. 5.

Figure 6: Horizontal phase space at different time steps
(which are marked in Fig.5): t0 is when the bunch enters
into the cloud (z = −3σz), t1 correspond to the first peak,
t2 the first ’valley’ and t3 is the last peak.

Figure 7: Tune footprint obtained by tracking through a
frozen electron potential by a frequency-map analysis [5]
(Courtesy Y. Papaphilippou).

SUMMARY AND OUTLOOK

We presented an analytical approach to compute the in-
oherent tune shift caused by the electron pinch during the

passage of a bunch through the electron cloud. An expres-
sion for the electron density evolution was derived for any
longitudinal bunch profile, a linear transverse force, and
circular symmetry. The incoherent tune shift as a func-
tion of radial and longitudinal position inside the bunch has
been computed from the pinched electron distribution.

Via a simple tracking code, we have extended this study
to electrons moving in the nonlinear field of a beam with
Gaussian transverse profile. In this case, the electrons do
not reach the centre of the bunch simultaneously, and after
a quarter oscillation the density at the center of the bunch
stays roughly constant. It is easy to estimate the tune shift
from the value of this stationary density enhancement.

In the near future we plan to continue with analytical ap-
proaches to model the electron cloud phenomena, e.g., by
generalizing our calculation to the nonlinear force. Our ob-
jective is in particular to understand the causes (and even
the very existence) of a slow emittance growth on a scale
longer than the synchrotron period [6, 7, 8, 9]. We will fur-
ther compare analytical results with HEADTAIL [4] sim-
ulations. We also plan to produce instability diagrams for
the electron cloud. Other challenging open questions are
the possible excitation of plasma waves by a passing bunch
and, related, the effect of longitudinal discontinuities in the
electron plasma.
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